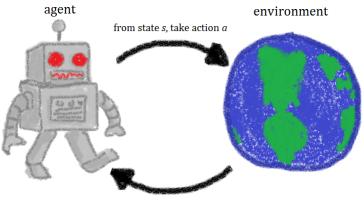
Tutorial: Reinforcement Learning with OpenAI Gym

EMAT31530/Nov 2020/Xiaoyang Wang

Reinforcement Learning



get reward R, new state s'

An *environment* provides the agent with state s, new state s', and the reward R. It also defines the action space.

RL Environments

- Google Research Football Environment
- ViZDoom
- TextWorld

https://research-football.dev/
http://vizdoom.cs.put.edu.pl/
https://textworld.readthedocs.io/en/latest/notes/framework.html

Reinforcement Learning

OpenAl Gym

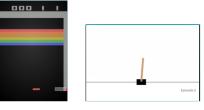
Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

- Open source interface to reinforcement learning tasks
- Gym library is a collection of test problems environments, with shared interfaces
- Compatible with existing numerical computation libraries and deep learning frameworks
- Customized environments!

https://gym.openai.com/

OpenAI Gym

Environments



Atari 2600

Classic control

MuJoCo

Robotics

OpenAI Gym

Requirements

Python 3.5+

Installation: pip install gym

Running example: interaction with an env

```
import gym
env = gym.make('CartPole-v0')
env.reset()
for _ in range(1000):
    env.render()
    env.step(env.action_space.sample()) # take a random action
env.close()
```

https://gym.openai.com/docs/

Reinforcement Learning

OpenAl Gym

- Environment versions
- Environment horizons episodes
- env.step() vs P(s'|s,a)

Q: Can we record a video of the rendered environment?

Implementation: Q-learning

Algorithm: Q-learning

Parameters: step size $\alpha \in (0, 1]$, $\epsilon > 0$ for exploration

- Initialise Q(s, a) arbitrarily, except $Q(\text{terminal}, \cdot) = 0$
- **2** Choose actions using Q, e.g., ϵ greedy.
- On each time step

$$Q^{\text{new}}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(R_t + \gamma \max Q(s_{t+1}, a) - Q(s_t, a_t))$$

Repeat step 2 and step 3

If desired, reduce the step-size parameter $\boldsymbol{\alpha}$ over time

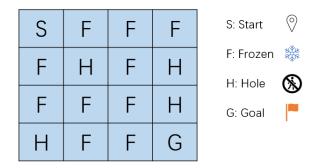
Algorithm: ϵ -greedy

Parameters: small $\epsilon \in (0, 1)$

$$a = \begin{cases} \arg \max_{a} Q(s, a), \text{ with probability } 1 - \epsilon \\ \text{a random action, with probability } \epsilon \end{cases}$$

Q table

	actions			
ste	rtes	A.	۵,	• • •
	So	(کردچ،۵۰)	Q(ډه,۵۰)	•••
	Sı	Q (५, .ao)	Q(5, .a1)	
	•	•	•	•



is_slippery=True by default

FrozenLake: discrete state space, discrete action space Can we use Q-learning to solve other environments, e.g., CartPole? Discretization